Octasom- an Octagonal Based Som Latticestructure for Biomedical Problems
نویسندگان
چکیده
In this study, an octagonal-based self-organizing network’s lattice structure is proposed to allow more exploration and exploitation in updating the weights for better mapping and classification performances. The neighborhood of the octagonal-based lattice structure provides more nodes for the weights updating than standard hexagonal-based lattice structure. Based on our experiment, the octagonal-based lattice structure performance is better than standard hexagonal lattice structure on biomedical datasets for classification problem. This indicates that proposed algorithm is an alternative lattice structure for self-organizing network which give more wisdom to classification problems especially in the biomedical domains.
منابع مشابه
An Approximate Analytic Model for Evaluating the Photonic Band Structure of a 2-D Octagonal Photonic Quasicrystals
In this work, using perturbation technique we have developed an approximate analytic model for evaluating the band structure of a 2-D octagonal photonic quasicrystal (PQC). Although numerical techniques are being used for evaluating such band structures, developing a numerical model to the best of our knowledge this work is the first instance of reporting helps to understand the physical proper...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل